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SUMMARY

The proper functioning of the human intestine is de-
pendent on its bacterial symbionts, the most predom-
inant of which belong to the Phylum Bacteroidetes.
These bacteria are known to use variable displays of
multiple capsular polysaccharides (CPs) to aid in their
survival and foraging within the intestine. Bacteroides
thetaiotaomicron is a prominent human gut symbiont
and a remarkably versatile glycophile. The structure
determination of the CPs, encoded by the eight CP
loci, is the key to understanding the mechanism of
this organism’s adaptation on a molecular level.
Herein, we report the bioinformatics-based discovery
and chemical demonstration of a biosynthetic path-
way that forms and cytidylates 2-keto-3-deoxy-D-
glycero-D-galacto-nononic acid (KDN), most likely
for inclusion in the CP encoded by B. thetaiotaomi-
cron CP locus 7.

INTRODUCTION

The development and function of the human intestine are largely

dependent on the resident bacterial community (Backhed et al.,

2005; Comstock and Kasper, 2006; Xu et al., 2003; Xu et al.,

2004; Mazmanian and Kasper, 2006). These bacteria engage in

a lifelong symbiotic relationship that provides the host with a de-

fense against bacterial pathogens, digestion of dietary nutrients,

synthesis of vitamins, and development of immune tolerance.

The physiology of a human can be strongly affected by the com-

position of the intestinal microbiota, which is constantly chang-

ing due to the prevailing environment of bacterial phages, dietary

intake, and toxins (e.g., antibiotics). An imbalance contributes to

obesity and inflammatory bowel disease (Mazmanian et al.,

2008; Turnbaugh et al., 2006, 2008; Ley et al., 2006).

The most predominate intestinal bacteria belong to the Phy-

lum Bacteroidetes, which are unique in their ability to use vari-

able displays of multiple capsular polysaccharides (CPs) to aid

in their survival and foraging within the intestine (Krinos et al.,

2001; Coyne and Comstock, 2008). B. thetaiotaomicron

possesses a large repertoire of genes for optimal flexibility in

response to conditions and nutrient availability in the gut. The

structure and function determination of the CPs encoded by
Chemistry & Biology 15, 893–8
the eight CP loci is key to understanding its inhabitation of the

human intestine on a molecular level (Xu et al., 2007). Herein,

we report the results of the bioinformatics-based discovery

and chemical demonstration of a novel biosynthetic pathway

that forms and cytidylates 2-keto-3-deoxy-D-glycero-D-gal-

acto-nononic acid (KDN) (Figure 1, 1), most likely for inclusion

in the CP encoded by B. thetaiotaomicron CP locus 7 (Xu

et al., 2007) (Figure 2). The presence of the KDN unit, which dis-

tinguishes this CP from those encoded at other loci, enables

mimicry of the human epithelial cell polysialic acid. Thus, the

KDN unit is important to the specific function of this CP.

The CMP-KDN synthesis unit encodes three previously un-

characterized proteins: BT1713, BT1714, and BT1715 (ExPasy

accession numbers Q8A712, Q8A711, and Q8A710). BT1714

is a distant sequence homolog (�30% identity) of the human

N-acetylneuraminate (Neu5NAc) (Figure 1, 2) synthase and the

bacterial Neu5NAc, legionaminic acid (Figure 1, 3), and pseuda-

minic acid (Figure 1, 4) synthases. BT1713 and the E. coli 2-keto-

3-deoxy-D-manno-octulosonic acid (Figure 1, 5) (KDO) 8-phos-

phate phosphatase (28% sequence identity) belong to the Yrb

C0 subfamily of the haloalkanoate dehalogenase superfamily

(HADSF). BT1713 is more distantly related to the human Neu5-

NAc-9-P phosphatase (HADSF subfamily C1) of the mammalian

CMP-Neu5NAc biosynthetic pathway (Figure 3). BT1715 is

a member of the cytidyltransferase family, which includes (the

eukaryotic and/or prokaryotic) CMP-KDO, CMP-Neu5NAc and

CMP-legionaminic acid synthases. The sequence of BT1715

has diverged to the extent that it is difficult to recognize its rela-

tionship to any known sialic acid-CMP synthetases. Because

BT1714 is not a homolog of KDO 8-P synthetase, and because

BT1713 demands a phosphorylated sialic acid substrate (which

excludes the legionaminic or pseudaminic acid pathways be-

cause both are 6-deoxysugars that cannot be phosphorylated

at C(6) (Glaze et al., 2008; Liu and Tanner, 2006), our search of

possible pathway products focused on a sialic acid that pos-

sesses the 9-carbon ketoacid frame of the CMP-Neu5NAc which

is also present in CMP-KDN.

RESULTS AND DISCUSSION

In order to identify the pathway product, the three genes were

cloned via a PCR-based strategy and expressed in E. coli, and

the protein products BT1714, BT1713, and BT1715 were puri-

fied using standard column chromatography procedures and
97, September 22, 2008 ª2008 Elsevier Ltd All rights reserved 893

mailto:dd39@unm.edu
mailto:drkallen@bu.edu
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov


Chemistry & Biology

KDN Biosynthesis
subjected to substrate specificity analyses (details provided in

Supplemental Data available online).

BT1714 Biochemical Function
The BT1714-catalyzed reaction between PEP and mannose 6-

phosphate, which is anticipated to produce KDN 9-P, was mon-

itored at 340 nm using a BT1713/Neu5NAc aldolase/NADH-

based coupled assay. Reaction solutions contained 15 mM

BT1714, 2 mM MgCl2 and varying concentrations of one

substrate, and a fixed concentration of the second substrate in

50 mM K+HEPES (pH 7.5). The steady-state kinetic constants

determined at 25�C and pH 7.5 from the initial velocity data

Figure 1. The Structures of Known Sialic Acids: KDN (1), Neu5NAc (2), Legionaminic Acid (3), Pseudaminic Acid (4), and KDO (5)

Figure 2. A Map of the B. thetaiotaomicron Capsular Polysaccharide Biosynthesis Locus 7

The arrows represent the structural genes and the numbers in between the arrows are the number of intervening nucleotides. The gene function annotation de-

rived from blast searches of nonredundant gene data bases is as follows: BT1726 integrase, BT1725 transcriptional regulator, BT1724 transcriptional regulator,

BT1723 O-antigen export protein, BT1722 O-antigen chain length determinant protein, BT1721 nucleotidyl transferase, BT1720 phosphoenolpyruvate phospho-

mutase, BT1719 phosphonopyruvate decarboxylase, BT1718 2-aminoethylphosphonate transaminase, BT1717 capsular polysaccharide repeat unit transporter

(‘‘flippase’’), BT1716 CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase, BT1715 CMP-sialic acid synthetase, BT1714 sialic acid synthase,

BT1713 HADSF phosphatase, BT1712 gylcosyltransferase, BT1711 unknown, BT1710 capsular polysacharride polymerase, BT1709 gylcosyltransferase, and

BT1708 gylcosyltransferase.
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Figure 3. Synthesis and Activation of Neu5Ac in Bacteria, KDN in B. thetaiotaomicron, and Neu5Ac in Vertebrates

(A–C) The E. coli CMP-Neu5NAc biosynthetic pathway (A), the B. thetaiotaomicron CMP-KDN biosynthetic pathway (B), and the human CMP-Neu5NAc

biosynthetic pathway (C).
are: kcat = 1.0 ± 0.1 min�1, (PEP)Km = 0.11 ± 0.01 mM (at 3 mM

mannose 6-phosphate), (mannose 6-phosphate)Km = 1.4 ± 0.1 mM

(at 1.5 mM PEP). The maximum value of kcat for the BT1714

(100 mM) catalyzed reaction between PEP (1.5 mM) and NAc-

mannose-2-amine 6-phosphate (4 mM), whose anticipated

product is Neu5NAc-9-P, was determined to be �0.0035

min�1. Mannose (product KDN), NAc-mannose-2-amine (prod-

uct Neu5NAc), mannose-2-amine (product neuramic acid) and

arabinose 5-phosphate (product KDO 8-P), arabinose (product

KDO) were also tested as substrates. Reaction solutions of

each of these sugars (4 mM), BT1714 (100 mM), 1.5 mM PEP,

2 mM MgCl2 and 50 mM K+HEPES (pH 7.5) were monitored us-

ing the spectrophotometric assay as well as by using high reso-

lution mass spectral analysis of the product mixture. Because in

each case no product was detected, the upper limit of kcat is set

at <0.0025 min�1. This finding shows that BT1714 is specific for

mannose 6-phosphate and, as a result, it is dedicated to KDN-9P

synthesis. The catalytic efficiency of BT1714 is low but

consistent with that reported for the human Neu5NAc-9-P syn-

thase (for reaction with NAc-mannose-2-amine 6-phosphate,

kcat = 1.3 min�1 and Km = 1.0 mM; for reaction with mannose
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6-phosphate, kcat = 0.6 min�1 and Km = 2.6 mM). BT1714 differs

from the human Neu5NAc-9P synthase because it recognizes

only mannose-6-phosphate as substrate, whereas the human

Neu5NAc-9P synthase shows a small preference for NAc-man-

nose-2-amine 6-phosphate over mannose 6-phosphate (Hao

et al., 2005).

BTI1713 Biochemical Function
In order to define the substrate preference for the phosphatase

BT1713, the steady-state kinetic constants for catalyzed hydro-

lysis of the BT1714 product KDN-9-P and the structurally related

phosphorylated sialic acids Neu5NAc-9-P and KDO-8-P were

determined. The three reactants were synthesized from PEP

and mannose-6-phosphate, NAc-mannose-2-amine-6-phos-

phate or arabinose 5-phosphate using the catalysts BT1714, hu-

man Neu5NAc-9-P and E. coli KDO-8P synthase, respectively

(the detailed procedures and spectral data for the purified com-

pounds are provided in Supplemental Data). The BT1713 cata-

lyzed dephosphorylation reactions were monitored at 340 nm

by using a Neu5NAc aldolase/NADH-based coupled assay.

Assay solutions contained 2 mM MgCl2 and 50 mM K+HEPES
897, September 22, 2008 ª2008 Elsevier Ltd All rights reserved 895
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(pH 7.0, 25�C). The kcat and Km values measured for KDN 9-P

(72 ± 6 min�1 and 110 ± 10 mM), Neu5NAc-9-P (44 ± 1 min�1

and 120 ± 30 mM), and KDO 8-P (3.8 ± 0.2 min�1 and 310 ±

30 mM) show that the BT1713 substrate preference is KDN-9-

p > Neu5NAc-9-p > > KDO-8-P. The kinetic constants of the

human Neu5NAc-9-P phosphatase with Neu5NAc-9-P are kcat =

56 s�1 and Km = 90 mM (Maliekal et al., 2006) and the kinetic con-

stant of the E. coli KDO-8-P phosphatase with KDO-8P are kcat =

175 s�1 and Km = 75 mM (Wu and Woodard, 2003). It is notewor-

thy that the specificity constant measured for BT1714, with its

native substrate (kcat/Km = 1 3 104 M�1s�1), is comparable to

those of HADSF phosphatases, which function in secondary

degradation pathways (Tremblay et al., 2006). The greater

specificity constants of the human Neu5NAc-9-P phosphatase

(kcat/Km = 6 3 105 M�1s�1) (Maliekal et al., 2006) and E. coli

KDO-8-P phosphatase (kcat/Km = 2 3 106 M�1s�1) (Wu and

Woodard, 2003) suggest that they possess a more highly

evolved catalytic function.

BT1715 Biochemical Function
The BT1715 (1.5 mM) catalyzed reaction between cytidine 50-tri-

phosphate (CTP) and KDN (prepared by using N-acylneuraminic

acid adolase, as detailed in Supplemental Data) was monitored

at 360 nm using an inorganic pyrophosphatase/2-amino-6-mer-

capto-7-methyl-purine riboside/purine nucleodide phosphory-

lase-based coupled assay. Assay solutions contained 10 mM

MgCl2 and 100 mM NaCl in 50 mM Tris (pH 7.5, 25�C). The kcat =

1.02 ± 0.03 min�1, (CTP)Km = 0.51 ± 0.03 mM (at 6 mM KDN),
(KDN)Km = 1.04 mM ± 0.01 (at 0.5 mM CTP). The maximum value

of the kcat for BT1715 (40 mM) catalyzed reaction between CTP

(0.5 mM) and 10 mM (commercial) Neu5NAc or KDO is below

the detection limit of �0.001 min�1.

Conclusions
The substrate specificities of BT1714, BT1713 and BT1715 iden-

tify the physiological product of the B. thetaiotaomicron BP locus

7-encoded pathway as CMP-KDN. Like the more common 9-

carbon sialic acid Neu5NAc, KDN (Inoue and Kitajima, 2006) is

used in the synthesis of a polysialic acid glycan unit of human

glycoproteins required for glycan-mediated cellular functions

(Varki, 2007). The Neu5NAc and KDN in humans are products

of a common pathway, as evidenced by the promiscuity of the

pathway enzymes and the presence of a single copy of a sialic

acid synthase gene in the human genome. Neu5NAc is synthe-

sized by bacterial pathogens as units within cell surface CPs

and/or lipopolysaccharrides (Severi et al., 2007). The bacterial si-

alic acid synthase is homologous to the human Neu5NAc-P syn-

thase but uses the bacterial pool of NAc-mannose to produce

NeuAc (Figure 3A) rather than the phosphorylated product. The

B. thetaiotaomicron KDN pathway (Figure 3B) most closely re-

sembles the human Neu5NAc pathway (Figure 3C) in that the

use of a phosphorylated sugar precursor demands the participa-

tion of a phosphatase (Angata and Varki, 2002). The human

phosphatase (which uses a cap domain in substrate binding)

and the B. thetaiotaomicron phosphatase (which does not pos-

sess a cap domain) evolved within separate subfamilies of the

HADSF. The B. thetaiotaomicron pathway also is distinguished

from the human pathway in that it is only capable of CMP-KDN

production. Given that the B. thetaiotaomicron genome does
896 Chemistry & Biology 15, 893–897, September 22, 2008 ª2008 E
not encode a second synthase homolog, we surmise that

B. thetaiotaomicron displays KDN rather than Neu5NAc at its

cell surface.

Using the BT1714 sequence as query in Blast searches of

deposited Bacteroides genome sequences, we identified a CP

locus which contains the neighboring genes encoding BT1714,

BT1713, and BT1715 analogs in each of the intestinal bacterial

species B. stercoris and B. intestinalis. This suggests that cell

surface KDN display may be used by these symbionts as well

but does not imply that all strains of B. thetaiotaomicron would

necessarily contain this particular locus (Backhed et al., 2005).

SIGNIFICANCE

Human intestinal inflammation and inflammatory bowl dis-

ease stem in part from inappropriate immune responses to

gut microbiota. The interaction of the symbiont with its

host is mediated by the cell surface polysaccharides. In or-

der to understand these interactions on a molecular level,

the structures of the polysaccharides must be determined.

In this paper, we have identified the pathway for biosynthe-

sis of KDN as a distinguishing unit of one of the seven cap-

sular polysaccharides used for variable display in B. thetaio-

taomicron. The KDN unit might be used to protect the cell

from bacteriophage invasion and/or to mimic the human

epithelial cell surface. Bacterial CMP-KDN biosynthesis

has not been previously described. Consequently, this

work shows that such a pathway exits in a bacterium and

that it is unrelated to the bacterial CMP-Neu5NAc pathway

(Angata and Varki, 2002). Although the B. thetaiotaomicron

CMP-KDN biosynthesis genes might have originated from

the host CMP-Neu5NAc pathway genes via horizontal trans-

fer, we have shown herein that the encoded enzymes have

evolved to become specialized in CMP-KDN synthesis by

demonstrating their specificity for the production and utili-

zation of KDN over Neu5NAc.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, and four figures and can be found with this article online

at http://www.chembiol.com/cgi/content/full/15/9/893/DC1/.
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